The Paleomagnetism of Single Silicate Crystals: Recording Geomagnetic Field Strength during Mixed Polarity Intervals, Superchrons, and Inner Core Growth
نویسندگان
چکیده
[1] The basic features of the geomagnetic reversal chronology of the last 160 million years are well established. The relationship between this history and other features of the field, however, has been elusive. The determination of past field strength (paleointensity) is especially challenging. Commonly accepted results have come from analyses of bulk samples of lava. Historic lavas have been shown to faithfully record the past field strength when analyzed using the Thellier double-heating method. Data from older lavas, however, tend to show effects of in situ and laboratory-induced alteration. Here we review an alternative approach. Single plagioclase crystals can contain minute magnetic inclusions, 50–350 nm in size, that are potential high-fidelity field recorders. Thellier experiments using plagioclase feldspars from an historic lava on Hawaii provide a benchmark for the method. Rock magnetic data from older lavas indicate that the feldspars are less susceptible to experimental alteration than bulk samples. This resistance is likely related to the lack of clays. In addition, magnetic minerals are sheltered by the encasing silicate matrix from natural alteration that can otherwise transform the well-defined thermoremanent magnetization into an irresolute chemical remanent magnetization. If there is a relationship between geomagnetic reversal frequency and paleointensity, it should be best expressed during superchrons, intervals with few (or no) reversals. Thellier data sets based on single plagioclase crystals from lavas erupted during the Cretaceous Normal Polarity Superchron ( 83–120 million years ago) suggest a strong (>12 10 Am), stable field, consistent with an inverse relationship between reversal frequency and paleointensity. Superchrons may represent times when the pattern of core-mantle boundary heat flux allows the geodynamo to operate at peak efficiency, as suggested in some numerical models. Thellier data from single plagioclase crystals formed during times of moderate (<1 reversal/million years) and very rapid (>10 reversals/million years) reversal occurrence suggest a weaker and more variable field. These paleointensity data, together with a consideration of paleomagnetic directions, suggest that geomagnetic reversals, field morphology, secular variation, and intensity are related. The linkages over tens of millions of years imply a lower mantle control on the geodynamo. On even longer timescales the magnetization held by plagioclase and other silicate crystals can be used to investigate the Proterozoic and Archean geomagnetic field during the onset of growth of the solid inner core. Data from plagioclase crystals separated from mafic dikes, together with directional data from whole rocks, indicate a dipole-dominated field similar to that of the modern, 2.5–2.7 billion years ago. Older Archean rocks are of great interest for paleomagnetic and paleointensity investigations because they may record a time when the compositionally driven convection of the modern dynamo may not have been operating and a solid inner core did not play its current role in controlling the geometry of outer core flow. Most rocks of this age have been affected by lowgrade metamorphism; investigations using single silicate grains provide arguably our best hope of seeing through secondary geologic events and reading the early history of the geodynamo. Absolute paleointensity measurements of the oldest rocks on the planet will require the further development of methods to investigate silicate crystals with exsolved magnetic minerals that address the uncertainties posed by thermocrystallization remanent magnetization, anisotropy, and slow cooling. Fortunately, prior work in rock magnetism, together with advances in analytical equipment and techniques, provides a solid foundation from which these frontier issues can be approached.
منابع مشابه
Geomagnetic reversal rates following Palaeozoic superchrons have a fast restart mechanism
Long intervals of single geomagnetic polarity (superchrons) reflect geodynamo processes, driven by core-mantle boundary interactions; however, it is not clear what initiates the start and end of superchrons, other than superchrons probably reflect lower heat flow across the core-mantle boundary compared with adjacent intervals. Here geomagnetic polarity timescales, with confidence intervals, ar...
متن کاملMantle superplumes induce geomagnetic superchrons
We use polarity reversal systematics from numerical dynamos to quantify the hypothesis that the modulation of geomagnetic reversal frequency, including geomagnetic superchrons, results from changes in core heat flux related to growth and partial collapse of the two seismically-imaged lower mantle superplumes. We parameterize the reversal frequency sensitivity from numerical dynamos in terms of ...
متن کاملThe Cretaceous superchron geodynamo: observations near the tangent cylinder.
If relationships exist between the frequency of geomagnetic reversals and the morphology, secular variation, and intensity of Earth's magnetic field, they should be best expressed during superchrons, intervals tens of millions of years long lacking reversals. Here we report paleomagnetic and paleointensity data from lavas of the Cretaceous Normal Polarity Superchron that formed at high latitude...
متن کاملPaleomagnetism of Pleistocene Sediments From Drill Hole OL-92, Owens Lake, California Reevaluation of Magnetic Excursions Using Anisotropy of Magnetic Susceptibility
Magnetic Susceptibility) contains new anisotropy of magnetic susceptibility (AMS) data for selected samples from drill hole OL-92. The data were obtained from depth intervals that in earlier publications were interpreted to span several paleomagnetic excursions. Preliminary interpretation of the AMS results indicates that the high dispersion of the paleomagnetic directions within these interval...
متن کاملGrand challenges in geomagnetism and paleomagnetism
Geomagnetism and paleomagnetism is a broad sub-discipline of the Earth Sciences. I present the Grand Challenges from the perspective of a paleomagnetist and rock magnetist, hence I feel more comfortable with the paleomagnetic side of this short article than the geomagnetic side. Nevertheless, exciting things are happening in geomagnetism and the future is bright for both paleomagnetists and geo...
متن کامل